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SUMMARY

Abundance indices for mako shark (Isurus oxyrinchus) in the northwest Mexican Pacific for
the period 2006-2014 were estimated using data obtained through a pelagic longline
observer program. Individual longline set catch per unit effort data, collected by scientific
observers, were analyzed to assess effects of environmental factors such as sea surface
temperature and time-area factors. Standardized catch rates were estimated by applying
two generalized linear models (GLMs). The first model (using a quasi-binomial likelihood
and a complementary log-log link function) estimates the probability of a positive
observation and the second one estimates the mean response for non-zero observations,
using a lognormal error distribution. Sea surface temperature, year, area fished and
quarter were all significant factors included in the model.

INTRODUCTION

The driftnet fishery off the coast of southern California began in 1978, originally targeting
the common thresher shark (Alopias vulpinus) and shortfin mako (/surus oxyrinchus,
locally known as bonito shark). Almost immediately swordfish (Xiphias gladius) became an
important component of the catch. The early success of the fishery was attributed to the
abundance of Pacific swordfish and pelagic sharks in coastal waters and popular consumer
acceptance of both swordfish and sharks, together with lower operating expenses in
comparison with the swordfish harpoon fishery (primarily due to greater fuel efficiency).
Driftnet vessels landing swordfish in California numbered 173 in 1991, 169 in 1992, and
162 in 1993 (Holts and Sosa-Nishizaki 1998).

Stimulated by the successful driftnet fishery in California, in 1986 a small fleet of driftnet
vessels appeared in northern Baja California, Mexico. This fishery was stimulated both by
the reduction in longline permits and by the local abundance of swordfish and other
marketable by-catch products, including several species of large pelagic sharks. These
vessels were fiberglass or steel built, with an overall length of 18-25 m and a fish hold
capacity of 50-70 t. The number of vessels had grown to 20 by 1990, and to 31 by 1993
(Holts and Sosa-Nishizaki 1998). These vessels operated out of Ensenada and were similar
in design and size (18-25 m) to the U.S. driftnet vessels, operating just 100 km to the
north. The nets were similar in design to the U.S. drift nets, although they might be up to
4.5 km long, whereas U.S. nets were limited to 1 nm (1.8 km).

At the end of the 1990’s decade, because of the high by-catch of marine mammals and
marine turtles in the operations of the driftnets, the Ensenada-based swordfish fleet
began a fishery gear transition to a more selective, pelagic longline.

The Mexican Official Standard NOM-029-PESC-2006 banned driftnets in medium-size
vessels (10-27 m length). By the end of 2009, all vessels switched to longline and the
operational dynamics of the fleet changed drastically. Blue shark (Prionace glauca) and



shortfin mako became the most abundant catch in terms of numbers in the longline
fishery along the west and south coast of the Baja California peninsula. In the last decade,
the Mexican shark fisheries conducted by medium size commercial longliners from
Ensenada, Baja California and particularly from Mazatlan, Sinaloa had expanded its fishery
operations towards more oceanic waters in the Mexican Pacific Economic Exclusive Zone
(EEZ).

Evolution of the catch

Swordfish landings from Mexican driftnet vessels were first reported in 1986. They
increased steadily to a high of 831 t in 1991, and averaged 535 t in 1988-93. The low catch
in 1993 forced some fishing vessels to look for alternate resources, including coastal and
pelagic sharks, in the Gulf of California. The number of vessels operating driftnetting for
swordfish in the first half of 1994 fell to 16 (Holts and Sosa-Nishizaki 1998).The
information recorded by the Federal Fisheries Delegation in Baja California for 1990-1999
indicated an average catch per boat of 15.3 t and an average catch per trip of 2.73 t for
the whole driftnet and longline fleet.

Recently, Corro-Espinosa (unpublished data) conducted an analysis of the commercial
logbooks from the Mazatlan longline fleet for years 2009-2012. Corro-Espinosa
documented a total catch of 182,482 sharks from 11 species, caught in 8,447 sets. Blue
shark (P. glauca) 64.6%, thresher (A. vulpinus) 9.4%, bigeye thresher (A. superciliosus)
9.3%, pelagic thresher (A. pelagicus) 7.7% and mako (I. oxyrinchus) 1.7% were the most
frequently caught pelagic sharks. With a similar approach, Ortega-Salgado et al.
(unpublished data) examined the commercial logbooks of 124 fishery trips and 1,404
longline sets from the swordfish and shark fleet of Ensenada conducted during 2001-2013.
The logbooks reported a capture of 42,814 sharks belonging to six shark species, with blue
(86.5%), mako (11.9%) and thresher (0.73%) sharks being the most abundant species.

Mexican shark fishery scientific observer program

The shark scientific observer program (SSOP) was established in August 2006 by the
Fisheries and Aquaculture Commission (CONAPESCA), in offshore and pelagic waters of
the Mexican Pacific, on a voluntary basis, as established in the Shark and Ray Responsible
Fisheries Mexican Official Standard NOM-029-PESC-2006. The SSOP was designed by
Mexico’s National Fisheries Institute (INAPESCA) and implemented by the National
Research Trust for the National Program for Tuna Utilization and Dolphin Protection and
Other Programs Related to Protected Aquatic Species (FIDEMAR).

The shark scientific observers, trained by INAPESCA shark biologists and technicians,
record numerical catches by species and operational details (e.g. time, geographical
position, number of sets per trip, number of hooks per set, setting times, target species,
bait type),recording catch and by-catch composition and catch trends of species caught by
shark vessels. They also collect biometric (size and sex) and biological data (maturity



stage) of shark target species. INAPESCA is responsible for analyzing data generated by
the SSOP.

The sampling coverage of fishing trips by the SSOP has been very variable, with a
maximum of 20% in 2007 and a minimum of 1% in 2012 (see details in working paper
ISC/14/SHARKWG-3/02 entitled “Catch data for shortfin mako shark reported by fishery
observers from Mexican shark longline and driftnet fisheries in the North Pacific in 2006-
2014” by Castillo-Géniz et al., this meeting).

Catch composition

In the period 2006-2014 sharks comprised 94.3% and 97.4% of the catch in longline and
driftnet sets, respectively. Shark catch from all fleets with both fishery gears included 32
species from eight families and five orders. Longline shark catch composition was made up
by brown smoothhound (Mustelus henlei, 42.5%), blue shark (P.glauca, 33.9%) and angel
shark (Squatina californica, 5.4%), with mako shark (I. oxyrinchus) accounting for 1.6%.
The dominance of M. henlei in the observed total longline sets was the result of catches
obtained in the upper Gulf of California by a fleet based in Puerto Pefiasco, Sonora.

Driftnet shark catch was made up by 23 shark species from 7 families and 4 orders, with S.
californica (26.1%), M. henlei (26.0%) and the Pacific sharpnose shark Rhizoprionodon
longurio (19.7%) being the most abundant. Mako accounted for 4.2% in total driftnet
catches (see details in working paper ISC/14/SHARKWG-3/02 entitled “Catch data for
shortfin mako shark reported by fishery observers from Mexican shark longline and
driftnet fisheries in the North Pacific in 2006-2014” by Castillo-Géniz et al., this meeting).

Longline and driftnet catches also included 10 species of genus Carcharhinus.

Catch rate standardization

The primary indices of abundance for many of the world’s valuable and vulnerable species
are based on catch and effort. These indices, however, should be used with care because
changes over space and time in catch rates can occur because of factors other than real
changes in abundance (Gavaris 1980, Walters 2003, Maunder and Punt 2004, Haggarty
and King 2006, Campbell 2015). Nominal catch rates obtained from fishery statistics or
observer programs require standardization to correct for the effect of factors not related
to regional fish abundance but assumed to affect fish availability and vulnerability, usually
by using statistical regression methods (Bigelow et a/.1999, Ortiz and Arocha 2004).

Generalized Linear Models (GLM, Nelder and Wedderburn 1972, McCullagh and Nelder
1989) are the most common method for standardizing catch and effort data and their use
has become standard practice because this approach allows identification of the factors
that influence catch rates and calculation of standardized abundance indices, through the
estimation of the year effect (Goiii et al. 1999, Maunder and Punt 2004, Brodziak and



Walsh 2013). GLMs are defined mainly by the statistical distribution for the response
variable (in this case, catch rate) and the relationship of a linear combination of a set of
explanatory variables with the expected value of the response variable. Its use is based
upon the assumption that the relationship between a function of the expected value of
the response variable and the explanatory variables is linear. A variety of error
distributions of catch rate data have been assumed in GLM analyses (Lo et al. 1992,
Bigelow et al. 1999, Punt et al. 2000, Goiii et al. 2004, Maunder and Punt 2004).

For non-target species, catches are relatively unusual (in many records catch is zero, even
though effort is recorded to be non-zero) and catch and effort data are often
characterized by left-skewed distributions, with a high proportion of zero catches, and few
observations with high catch rates that resemble the distributions of highly aggregated
species. The presence of a high proportion of zeros can invalidate the assumptions of the
analysis and make inferences based on them dubious. The presence of zeros can also
result in computational difficulties, as the logarithm of zero is undefined (Maunder and
Punt 2004, Ortiz and Arocha 2004).

Alternatives to deal with this kind of data can include using zero-inflated models (Minami
et al. 2007, Zuur et al. 2009), models based on the Tweedie distribution (Tweedie 1984,
Shono 2008), or modeling separately the probability of obtaining a positive catch and the
catch rate, given that the catch is non-zero, using a standard distribution defined for
positive values (Pennington 1983, as proposed by Lo et al.1992). The probability of
obtaining a positive observation is usually modeled using the binomial distribution
(Stefansson 1996, Maunder and Punt 2004), with logit or probit link when assuming
approximately an equal number of zeros and ones (positive observations) or
complementary log-log (c log-log) when there is a predominance of negative or positive
observations (Myers et al. 2002, Zuur et al. 2009). A variety of distributions could be used
to model the catch rate given that it is non-zero (Dick 2004). Most commonly selected
distributions are the log-normal (Brown 1998, Porter et al. 2003), Gamma (Punt et al.
2000), Poisson (Ortiz and Arocha 2004), negative binomial (Punt et al. 2000) and inverse
gaussian (Walker et al. 2012). The final index of abundance is the product of the back
transformed year effects from the two GLMs (Lo et al. 1992, Stefansson 1996).

MATERIAL AND METHODS

This study is focused on the longline component of the shark fishery with medium size
vessels in the northwest region of the Mexican Pacific. Driftnet operations were banned in
2009, while longline fishing has prevailed through the years of operation of the scientific
observer program, so the longline time series June 2006-April 2014 is complete. In
particular, only data from the Ensenada longline fleet were used in the analysis, as it is the
one with better observer coverage within the main mako shark distribution area in the
Mexican Pacific. In this first stage, many zero-catch data —belonging to fleets operating
outside this area or scarcely sampled— were excluded from the analysis. Then, data were
subjected to a preliminary analysis, looking for missing values, incomplete information



and inconsistencies. In this way, from an initial total of 8,389 longline sets, just 1,145 sets
were retained to be used in the analysis. The proportion of zero-catch sets in this
subsample was 41.5%, pointing to the use of a two-part, Delta model for the analysis, with
a c log-log link for the binomial GLM.

After an initial exploratory analysis, factors which were considered as having a possible
influence on the RESPONSE variables of the binomial or lognormal models (catch
probability or logarithm of catch rate as number of makos per 100 hooks, respectively)
were selected for the analyses, like mean sea surface temperature (MEANTEMP as a two-
level factor) and time-area factors such as YEAR, QUARTER and fishing area (ZONE). Mean
sea surface temperature (MEANTEMP) was calculated for each set as the average of
temperature data measured in situ, at the beginning and the end of both gear setting and
retrieval. MEANTEMP levels were defined as LOW (<=18.5°C), and HIGH (>18.5°C), on the
basis of the mean sea surface temperature in which all validated sets of the Ensenada
fleet were performed, and matching approximately the lower limit of the preferential
range (18-21°C) of sea surface temperatures for shortfin makos (Castro 2011). Two fishing
areas (ZONE) were defined as NORTH (>27° LN) and SOUTH (<=27° LN), based upon the
central latitude of the fishing area (Figure 1). Catch probability and catch rates were
modeled as a function of these factors.

Standardized indices of relative abundance of mako shark were developed based on two
generalized linear models (GLMs). The first model estimates the probability of a positive
observation using a quasi-binomial likelihood to model any potential overdispersion, and a
complementary log-log (c log-log) link function. The second model (the “positive” model)
estimates the mean response for those non-zero observations, assuming that the error
distribution is (in this case) lognormal. The final index is the product of the back-
transformed year effects from the two GLMs. The analyses were performed using the R
language/environment version 3.0.1 (R Core Team 2013). The Delta model was set with
the Delta-GLM function from SEDAR (2006).

The predictor variables QUARTER, MEANTEMP and ZONE were included initially in both
GLM models as a set of direct effects and their two-way interactions. Although we are
conscious that inter annual variations in spatial or temporal patterns could occur (v. gr.
the species and/or effort distribution, seasonal changes in temperature or other factors
among years), we preferred not including interactions involving the factor YEAR at this
stage of the analysis with fixed effects models. Including interactions involving the factor
YEAR, as well as treating it as a random factor by using Generalized Linear Mixed Effects
Models (GLMMs) as suggested by Maunder and Punt 2004 and Campbell 2015, could be
considered at later stages of the analysis.

The formula of the maximum (initial) models was:

RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP + QUARTER:ZONE + MEANTEMP:ZONE



They were assessed through tests of hypothesis to assay each potential term one at a
time, using deletion tests in order to prevent the potential effects of colinearities, as
described by Crawley (2009). The effect of the term was determined to be significant at
least at the alpha = 0.05 level based on an F test for both the quasi-binomial and
lognormal GLM models. A weight vector based on the annual variances of nominal catch
rates was also included in the positive model (lognormal), to indicate that the catch rates
of different years have different dispersions, with the values in the vector of annual
weights being inversely proportional to the dispersions (i.e., observations in the year with
the least variance in catch rates has weight = 1). Standard errors and coefficients of
variation for the standardized abundance indices were estimated with a jackknife routine.

RESULTS AND DISCUSSION

The quasi-binomial GLM presented a very small over dispersion (dispersion parameter =
1.020). The results of the tests of hypothesis (deletion tests) of the factors and
interactions included in the quasi-binomial GLM, are shown in Table 1. The minimum
adequate (final) model was:

RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP + QUARTER:ZONE

The results of the tests of hypothesis (deletion tests) of the factors included in the positive
GLM of the lognormal model are shown in Table 2. The final model was:

RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP

The results of the relative abundance analyses for shortfin mako (2006-2014) from the
delta-lognormal model are shown in Table 3. Figure 2 shows the quasi-binomial index,
together with the positive and combined indices. Table 4 and Figure 3 show the estimated
values of the relative index of the combined model and their 95% confidence intervals.

Figure 4 shows the residuals of the quasi-binomial (right) and log normal (left) GLMs as
well as the marginal-model plots for each factor. The residuals for the log normal GLM are
close to normal. The pattern of the residuals of the quasi-binomial GLM, although close to
the plot’s central line, show a clear two-bands pattern that is typical of the models with a
binary response as their residuals are not asymptotically normal (Christensen 1997, Zuur
et al. 2009). Diagnostic plots showed good agreement with model assumptions and there
were no clear systematic patterns in the residuals.

Spatial-temporal heterogeneity in the marine environment is believed to greatly affect the
biology, dynamics, and availability of fish stocks, as well as their vulnerability to fishing
gear, thus introducing a source of variability in nominal catch rates (Bigelow et al. 1999).

Sea surface temperature is one of the most important physical factors because it modifies
the geographical and vertical aggregation patterns of fishes, through its effect on feeding,



reproductive and migratory behavior, and body thermoregulation (Fonteneau 1998).The
importance of sea surface temperature as an explanatory variable in the present analysis
points to the potential utility of exploring other possible relationships between probability
of catch or catch rate and mesoscale oceanic features by including thermal gradients in
the model. Detection of a stronger relationship between probability of catch and the
quarter*temperature interaction was due —at least in part— to the space-time microscale
approach used.

It is possible, however, that the relationships found between probability of catch or catch
rate and temperature may not only be due to specific temperature preferences by mako
shark, especially because most of the sets analyzed occurred in waters with surface
temperatures below 28°C, considered to be the thermal maximum for the distribution of
this species (Castro 2011). The interaction between the factors QUARTER and MEANTEMP
could be explained in terms of seasonal temperature variations that could affect the
spatial distribution of the species. Similarly, the interaction between the factors QUARTER
and ZONE could involve a spatial component in those variations (v.gr. one zone having a
seasonal pattern different from the other one).

It is possible that the biggest inter-annual differences observed in the abundance index
result, at least in part, from inter-annual differences in sample sizes. Taking into account
the uncertainty, the results of this analysis point at the abundance index trends being
close to stability in the analyzed period.

Variability in probability of catch or nominal catch rates can also be related to other
physical, chemical, and biological processes or factors in the ocean (e.g. water
transparency, circulation patterns, frontal zones, salinity, plankton, nekton), which
together with temperature define the identity, structure, and interaction of water masses
and can affect the availability of potential prey and the capture efficiency of predatory
fishes (Laurs et al. 1984, Bigelow et al.1999). Fishery-related factors like hook size and
type, fishing depth or bait type were not included in this analysis, as data on these factors
were not available in the data set we used but could be available in the observer data
base. Other factors, like moon phase during the fishing set or distance from the coast, that
could be included in a more detailed analysis, were not considered at this stage due to
time constraints.

The present study represents the first attempt to merge fishery and environmental
information from the distribution range of the shortfin mako in the Mexican Pacific,
estimate the best available relative abundance indices, and model recent trends in CPUE.
Results may be improved by adding other predictor variables to the model, extending the
time series, and taking into account the size-age structure and sex of the catches. Variable
transformation and use of generalized additive models (GAMs) may also increase the
explanatory power of the model, due to the likely nonlinearity of many of the functional
relationships between probability of catch or catch rate and the predictor variables.



REFERENCES

Bigelow, K.A., C.H. Boggs, X. He. 1999. Environmental effects on swordfish and blue shark
catch rates in the US North Pacific longline fishery. Fish. Oceanogr. 8 (3), 178—198.

Brodziak, J., W.A. Walsh. 2013. Model selection and multimodel inference for
standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in
the Hawaii-based longline fishery. Can. J. Fish. Aquat. Sci. 70, 1723-1740.

Brown, C.A. 1998. Standardized catch rates for yellowfin tuna (Thunnus albacares) and
bigeye tuna (Thunnus obesus) in the Virginia - Massachusetts (U.S.) rod and reel fishery.
Int. Comm. Conserv. Atl. Tunas, Col. Vol. Sci. Pap. 49(3), 357-369.

Campbell, R.A. 2015. Constructing stock abundance indices from catch and effort data:
Some nuts and bolts. Fisheries Research 161, 109-130.

Castro, J.I. 2011. The sharks of North America. Oxford University Press. 613 p.

Christensen, R. 1997. Log-linear models and logistic regression. Springer. 483 p.

Crawley, M. 2007. The R Book. John Wiley & Sons. England. 942p.

Dick, E.J. 2004. Beyond ‘lognormal versus gamma’: discrimination among error
distributions for generalized linear models. Fisheries Research 70, 351-366.

Fonteneau, A. 1998. Introduction aux problémes des relations thons-environnement dans
I’Atlantique. Int. Comm. Conserv. Atl. Tunas, Col. Vol. Sci. Pap. 50(1), 275-317.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from
commercial data. Can. J. Fish. Aquat. Sci. 37, 2272-2275.

Haggarty, D.R., J.R. King. 2006. CPUE as an index of relative abundance for nearshore reef
fishes. Fisheries Research 81, 89—-93.

Gonii, R., F. Alvarez, S. Adlerstein. 1999. Application of generalized linear modeling to catch
rate analysis of Western Mediterranean fisheries: the Castellén trawl fleet as a case
study. Fisheries Research 42, 291-302.

Holts, D.B., O. Sosa-Nishizaki. 1998. Swordfish, Xiphias gladius, fisheries of the Eastern
North Pacific Ocean. In: Barrett, I, O. Sosa-Nishizaki, N. Bartoo (eds.), Biology and
fisheries of swordfish, Xiphia gladius, 63-76. U.S. Dep. Commer., NOAA Technical
Report NMFS, 142.

Laurs, R.M., P.C. Fiedler, D.R. Montgomery. 1984. Albacore tuna catch distributions
relative to environmental features observed from satellites. Deep-Sea Research 31(9),
1085-1099.

Lo, N.C.H., L.D. Jacobson, J.L. Squire. 1992. Indices of relative abundance from fish spotter
data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49, 2515-2526.

Maunder, M.N., A.E. Punt. 2004. Standardizing catch and effort data: a review of recent
approaches. Fisheries Research 70, 141-159.

McCullagh, P., J.A. Nelder. 1989. Generalized Linear Models, 2nd ed. Chapman and Hall,
London. 511 p.

Minami, M., C.E. Lennert-Cody, W. Gaoc, M. Roman-Verdesoto.2007.Modeling shark
bycatch: The zero-inflated negative binomial regression model with smoothing.
Fisheries Research 84, 210-221.

Myers, R.H., D.C. Montgomery, G.G. Vining, T.J. Robinson. 2002. Generalized linear models
with applications in engineering and the sciences. John Wiley & Sons. 496 p.



10

Nelder, J.A., RW.M. Wedderburn. 1972. Generalized linear models. Journal of the Royal
Statistical Society, Series A 135, 370-384.

Ortiz, M., F. Arocha. 2004. Alternative error distribution models for standardization of
catch rates of non-target species from a pelagic longline fishery: billfish species in the
Venezuelan tuna longline fishery. Fisheries Research 70, 275-297.

Pennington, M. 1983. Efficient Estimators of Abundance, for Fish and Plankton Surveys.
Biometrics 39 (1), 281-286.

Porter, J.M., M.Ortiz, S.D. Paul. 2003. Updated standardized CPUE indices for Canadian
bluefin tuna fisheries based on commercial catch rates. ICCAT Col. Vol. Sci. Pap. 55 (3),
1005-1018.

Punt, A.E., T.Il. Walker, B.L. Taylor, F. Pribac. 2000. Standardization of catch and effort data
in a spatially-structured shark fishery. Fisheries Research 45, 129-145.

R Core Team. 2013. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

SEDAR (Southeast Data, Assessment and Review). 2006. User’s Guide: Delta-GLM function
for the R language/environment (Version 1.7.2, revised 07-06-2006). SEDAR 17-RD16.
Miami, FL.

Shono, H. 2008. Application of the Tweedie distribution to zero-catch data in CPUE
analysis. Fisheries Research 93, 154-162.

Stefansson, G. 1996. Analysis of groundfish survey abundance data: combining the GLM
and delta approaches. ICES J. Mar. Sci. 53, 577-588.

Tweedie, M.C K. 1984. An Index which Distinguishes between Some Important Exponential
Families. In: Ghosh, J.K. and J. Roy (Eds.), Statistics: Applications and New Directions.
Proceedings of the Indian Statistical Golden Jubilee International Conference. Indian
Statistical Institute, 579-604.

Walker, T.I., K. Giri, F.I. Trinnie, D.J. Reilly. 2012. CPUE data screening, selection and
standardisation for stock assessment of southern rock lobster (Jasus edwardsii) in
Victoria. Victorian Rock Lobster Resource Assessment Group, Meeting 7 (8 March
2012).

Walters, C. 2003. Folly and fantasy in the analysis of spatial catch rate data. Can. J.Fish.
Aquat. Sci. 60, 1433-1436.

Zuur, A.F., E.N. Leno, N.J. Walker, A.A. Saveliev, G.M. Smith. 2009. Mixed Effects Models
and Extensions in Ecology with R. Springer. 574 p.




11

Table 1.-Deletion tests for the quasi-binomial GLM model®.

> ModQBin2 <- update(ModQBinl, . ~ . —-QUARTER:MEANTEMP)
>

>anova(ModQBinl, ModQBin2, test= "F')

Analysis of Deviance Table

Model 1: RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
QUARTER:ZONE + MEANTEMP :ZONE

Model 2: RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:ZONE

+ MEANTEMP:ZONE

Resid. DfResid. Dev Df Deviance F  Pr(GF)
1 1124 1379.9
2 1127 1394.4 -3 -14.512 4.7481 0.002694 **

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 ° ~ 1
>

>
> ModQBin2 <- update(ModQBinl, . ~ . -QUARTER:ZONE)
>

>anova(ModQBinl, ModQBin2, test= "F'")

Analysis of Deviance Table

Model 1: RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
QUARTER:ZONE + MEANTEMP :ZONE

Model 2: RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
MEANTEMP - ZONE

Resid. DfResid. Dev Df Deviance F  PrCeh)
1 1124 1379.9
2 1127 1392.6 -3 -12.693 4.1531 0.006142 **

Signif. codes: 0 “**** 0.001 “**” 0.01 “*” 0.05 “.” 0.1 ° ~ 1
>

>
> ModQBin2 <- update(ModQBinl, . ~ . -MEANTEMP:ZONE)
>

>anova(ModQBinl, ModQBin2, test= "F')
Analysis of Deviance Table

Model 1: RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
QUARTER:ZONE + MEANTEMP :ZONE

Model 2: RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
QUARTER:ZONE

Resid. DfResid. Dev Df Deviance F Pr(GF)
1 1124 1379.9
2 1125 1383.8 -1 -3.8931 3.8213 0.05085 .

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “~ ~ 1
>

>

> ModQBin3 <- update(ModQBin2, . ~ . -YEAR)
>

>anova(ModQBin2, ModQBin3, test= "F')
Analysis of Deviance Table

Model 1: RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
QUARTER:ZONE

Model 2: RESPONSE ~ QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP

+ QUARTER:ZONE

Resid. DfResid. Dev Df Deviance F Pr(GF)
1 1125 1383.8
2 1133 1446.6 -8 -62.797 7.6923 4.509e-10 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 ° ~ 1
>

!Note: What is being shown in this table is the automatic output for this routine. Internally, the
response variable for the Binomial GLM is treated as a presence/absence variable. What is
modeled in this part of the model is the probability of catch being not zero.



Table 2.-Deletion tests for the positive GLM (Lognormal)?.

> ModLognorm2 <- update(ModLognorml, . ~ . -QUARTER:MEANTEMP)
>

>anova(ModLognorml, ModLognorm2, test= "F')
Analysis of Deviance Table

Model 1: 10og(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
QUARTER:ZONE + MEANTEMP:ZONE
Model 2: log(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:ZONE + MEANTEMP:ZONE

Resid. DfResid. Dev DF Deviance F PrCcF)
1 649 204.14
2 652 206.97 -3 -2.8274 2.9963 0.03018 *

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 < ~ 1
>

>
> ModLognorm2 <- update(ModLognorml, . ~ . -QUARTER:ZONE)
>

>anova(ModLognorml, ModLognorm2, test= "F')
Analysis of Deviance Table

Model 1: 10g(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
QUARTER:ZONE + MEANTEMP:ZONE

Model 2: 10g(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
MEANTEMP - ZONE

Resid. DfResid. Dev Df Deviance F Pr(cF)
1 649 204.14
2 652 206.12 -3 -1.9778 2.0959 0.09952 .

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 < ~ 1
>

>

> ModLognorm3 <- update(ModLognorm2, . ~ . -MEANTEMP:ZONE)

>

>anova(ModLognorm2, ModLognorm3, test= "F'™)

Analysis of Deviance Table

Model 1: log(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP +
MEANTEMP - ZONE

Model 2: log(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE

+ QUARTER:MEANTEMP

Resid. DfResid. Dev Df Deviance F PrCcF)
1 652 206.12
2 653 207.16 -1 -1.0445 3.3039 0.06957 .

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1
>

>

> ModLognorm4 <- update(ModLognorm3, . ~ . -ZONE)
>

>anova(ModLognorm3, ModLognorm4, test= "F')
Analysis of Deviance Table

Model 1: 1og(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE
+ QUARTER:MEANTEMP
Model 2: 1og(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + QUARTER:MEANTEMP

Resid. DfResid. Dev DFf Deviance F PrGF)
1 653 207.16
2 654 218.03 -1 -10.865 34.249 7.675e-09 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 < ~ 1
>

>

> ModLognorm4 <- update(ModLognorm3, . ~ . -YEAR)
>

>anova(ModLognorm3, ModLognorm4, test= "F')
Analysis of Deviance Table

Model 1: log(RESPONSE) ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP
Model 2: 10g(RESPONSE) ~ QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP

Resid. DfResid. Dev Df Deviance F  PrCcF)
1 653 207.16
2 661 214.24 -8 -7.0787 2.7891 0.004841 **

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
>

!Note:The response variable for the Lognormal GLM is treated as a continuous variable.



Table 3.- Results of the delta-Lognormal model fit.

Lognormal distribution assumed for positive observations.

Formula for quasi-binomial GLM:

13

RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP + QUARTER:ZONE

Formula for gaussian GLM:

RESPONSE ~ YEAR + QUARTER + MEANTEMP + ZONE + QUARTER:MEANTEMP

index
2006  0.253049411618264
2007  0.119516792032309
2008  0.092401485052865
2009 0.177544680253138
2010  0.13990322923433
2011 0.201419582053638
2012  0.324606815130658
2013  0.155154357057024
2014  0.191015600777476
QUARTER
1 0.133803775808748
2 0.151907093791985
3 0.226076063167899
4 0.184303548614367
MEANTEMP
H 0.178811325643948
L 0.168992482716388
ZONE
N 0.226761020423412
S 0.135581406019589
V1

AlC.binomial NA
AlC.lognormal
sigma.mle

jack.mean
0.253051696677215
0.119517027350201
0.0924021205846411
0.177545650255557
0.139905471469418
0.201421367132468
0.324617795419286
0.15515612591302
0.191019283344254

532.916982035871
0.556054952140217

jack.se

0.0517664468582902
0.0203981294942961
0.0176309651471418
0.0311649469434794
0.0264182009901829
0.0509040937462057
0.0957985276865822
0.0293375623970172
0.0437745461261511

jack.cv
0.204570508689355
0.17067166167564
0.190808244446014
0.175532980763182
0.188831960025268
0.252726637734012
0.295121738734974
0.189086294149218
0.229167387103352



Table 4.- 95% confidence intervals of the estimated indices

for the delta-lognormal model and re-scaled values.

2006
2007
2008
2009
2010
2011
2012
2013
2014

*Approximate 95% lower and upper confidence intervals.

2006
2007
2008
2009
2010
2011
2012
2013
2014

*Approximate 95% lower and upper confidence intervals.

Estimated
index
0.253049412
0.119516792
0.092401485
0.177544680
0.139903229
0.201419582
0.324606815
0.155154357
0.191015601

Re-scaledindex

1.376422248
0.650092686
0.502603262
0.965726205
0.760981486
1.095589957
1.765647426
0.843937584
1.038999146

LCI*

0.151587176
0.079536458
0.057844793
0.116461384
0.088123555
0.101647558
0.136841701
0.097652735
0.105217490

LCI*
0.824534465
0.432625984
0.314637604
0.633473278
0.479334140
0.552895815
0.744328787
0.531166604
0.572313896

ucr*

0.354511647
0.159497126
0.126958177
0.238627976
0.191682903
0.301191606
0.512371929
0.212655979
0.276813711

ucr*
1.928310031
0.867559387
0.690568921
1.297979132
1.042628832
1.638284099
2.786966065
1.156708563
1.505684397
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Figure 1.- The zones used in the analyses. Sets positive for shortfin mako are shown with a

circle. Negative sets are shown by small triangles.
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Figure 2.- Quasi-Binomial, Positive and Combined indices
for mako shark 2006-2014.
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Figure 3.- Relative abundance indices for shortfin mako with
approximate 95% confidence intervals. Delta-lognormal
model for years 2006-2014.
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Figure 4.- Residuals and Marginal-model plots of the log normal (left) and quasi-binomial (right)
GLMs. The residuals for the log normal GLM are close to normal. The pattern of the residuals of
the quasi-binomial GLM, although close to the plot’s central line, show a clear two-bands pattern,
typical of the models with a binary response (Christensen 1997, Zuur et al. 2009).



